MAX materials and MXene materials are new two-dimensional materials that have attracted much attention in recent years, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in numerous fields. The following is a comprehensive guide to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material composed of M, A, X elements in the periodic table, collectively called “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the main group elements, like aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, the 3 elements of the alternating composition arrangement, with hexagonal lattice structure. Due to their electrical conductivity of metal and high strength, high-temperature resistance and corrosion resistance of structural ceramics, they are commonly used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is really a new kind of layered carbon nitride inorganic non-metallic material with all the conductive and thermal conductive qualities of metal, composed of three elements with the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X means the elements of C or N. The MXene material is really a graphene-like structure obtained through the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAXenes and MXenes are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens.
Applications of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have a variety of applications in structural materials. For example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be found in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Additionally, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be used in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. For example, K4(MP4)(P4) is one in the MAX materials with high ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials certainly are a new type of two-dimensional nanomaterials obtained by MAX phase treatment, similar to the structure of graphene. The surface of MXene materials can interact with more functional atoms and molecules, and a high specific area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation strategies for MXene materials usually range from the etching therapy for the MAX phase as well as the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials certainly are a new type of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, such as high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the cabability to maintain high strength and stability at high temperatures.
Uses of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are commonly used in energy storage and conversion. For instance, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. In addition, MXene materials can also be used as catalysts in fuel cells to boost the action and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. For example, MXene materials can be used as electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, improving the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For example, MXene materials can be used gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials could also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, using the continuous progress of technology and science and the improving demand for services for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials is going to be further expanded and improved. These aspects can become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques could be further explored to understand a much more efficient, energy-saving and environmentally friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials is definitely high, but there is still room for more optimization. In the future, the composition, structure, surface treatment as well as other facets of the material can be studied and improved thorough to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials have been popular in lots of fields, but you can still find many potential application areas to get explored. In the future, they may be further expanded, such as in artificial intelligence, biomedicine, environmental protection as well as other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a broad application prospect in lots of fields. With all the continuous progress of science and technology and the continuous improvement of application demand, the preparation technology, performance optimization and application areas of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.